1000PA

| 1000 Prehistorc Animals | Dinosaurs, Fossils, Ruins | Articles and News |

  • Home
  • Anthropology
  • Archaeology
  • Evolution

    • Evolution / Charles Darwin

      Life on Earth evolved from a universal common ancestor approximately 3.8 billion years ago...

  • Paleontology

Sun02252018

Last update04:28:52 PM GMT

Back Archaeology Archaeology Climate in northern Europe reconstructed for the past 2,000 years: Cooling trend calculated precisely for the first time

Climate in northern Europe reconstructed for the past 2,000 years: Cooling trend calculated precisely for the first time

1000pa (July 9, 2012) — An international team that includes scientists from Johannes Gutenberg University Mainz (JGU) has published a reconstruction of the climate in northern Europe over the last 2,000 years based on the information provided by tree-rings. Professor Dr. Jan Esper's group at the Institute of Geography at JGU used tree-ring density measurements from sub-fossil pine trees originating from Finnish Lapland to produce a reconstruction reaching back to 138 BC. In so doing, the researchers have been able for the first time to precisely demonstrate that the long-term trend over the past two millennia has been towards climatic cooling.

"We found that previous estimates of historical temperatures during the Roman era and the Middle Ages were too low," says Esper. "Such findings are also significant with regard to climate policy, as they will influence the way today's climate changes are seen in context of historical warm periods." The new study has been published in the journal Nature Climate Change.

Was the climate during Roman and Medieval times warmer than today? And why are these earlier warm periods important when assessing the global climate changes we are experiencing today? The discipline of paleoclimatology attempts to answer such questions. Scientists analyze indirect evidence of climate variability, such as ice cores and ocean sediments, and so reconstruct the climate of the past. The annual growth rings in trees are the most important witnesses over the past 1,000 to 2,000 years as they indicate how warm and cool past climate conditions were.

Researchers from Germany, Finland, Scotland, and Switzerland examined tree-ring density profiles in trees from Finnish Lapland. In this cold environment, trees often collapse into one of the numerous lakes, where they remain well preserved for thousands of years.

The international research team used these density measurements from sub-fossil pine trees in northern Scandinavia to create a sequence reaching back to 138 BC. The density measurements correlate closely with the summer temperatures in this area on the edge of the Nordic taiga; the researchers were thus able to create a temperature reconstruction of unprecedented quality. The reconstruction provides a high-resolution representation of temperature patterns in the Roman and Medieval Warm periods, but also shows the cold phases that occurred during the Migration Period and the later Little Ice Age.

In addition to the cold and warm phases, the new climate curve also exhibits a phenomenon that was not expected in this form. For the first time, researchers have now been able to use the data derived from tree-rings to precisely calculate a much longer-term cooling trend that has been playing out over the past 2,000 years. Their findings demonstrate that this trend involves a cooling of -0.3°C per millennium due to gradual changes to the position of the sun and an increase in the distance between the Earth and the sun.

"This figure we calculated may not seem particularly significant," says Esper, "however, it is also not negligible when compared to global warming, which up to now has been less than 1°C. Our results suggest that the large-scale climate reconstruction shown by the Intergovernmental Panel on Climate Change (IPCC) likely underestimate this long-term cooling trend over the past few millennia."

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:


Story Source:

The above story is reprinted from materials provided by Universität Mainz.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:

  1. Jan Esper, David C. Frank, Mauri Timonen, Eduardo Zorita, Rob J. S. Wilson, Jürg Luterbacher, Steffen Holzkämper, Nils Fischer, Sebastian Wagner, Daniel Nievergelt, Anne Verstege, Ulf Büntgen. Orbital forcing of tree-ring data. Nature Climate Change, 2012; DOI: 10.1038/nclimate1589

Note: If no author is given, the source is cited instead.

Disclaimer: Views expressed in this article do not necessarily reflect those of 1000pa or its staff.

First Bird

First Bird
What was the earliest known bird?

Unexplained artifacts

unexplained artifacts
The 10 most amazing unexplained artifacts

Evolution

Timeline: Human Evolution

Biggest Dinosaurs

The 10 Biggest Dinosaurs

Fossils 

Fossil Formation: How Do Fossils Form?
 

Book review

Dinosaurs Encyclopedia

Book Review

Dinosaurs: The Most Complete, Up-to-Date Encyclopedia for Dinosaur Lovers of All Ages ... WRITTEN BY A PROFESSIONAL paleontologist specifically for young readers, this guide to the Dinosauria is packed...